Six Challenges for Neural Machine Translation
نویسندگان
چکیده
We explore six challenges for neural machine translation: domain mismatch, amount of training data, rare words, long sentences, word alignment, and beam search. We show both deficiencies and improvements over the quality of phrasebased statistical machine translation.
منابع مشابه
A Comparative Study of English-Persian Translation of Neural Google Translation
Many studies abroad have focused on neural machine translation and almost all concluded that this method was much closer to humanistic translation than machine translation. Therefore, this paper aimed at investigating whether neural machine translation was more acceptable in English-Persian translation in comparison with machine translation. Hence, two types of text were chosen to be translated...
متن کاملNeural Machine Translation
Draft of textbook chapter on neural machine translation. a comprehensive treatment of the topic, ranging from introduction to neural networks, computation graphs, description of the currently dominant attentional sequence-to-sequence model, recent refinements, alternative architectures and challenges. Written as chapter for the textbook Statistical Machine Translation. Used in the JHU Fall 2017...
متن کاملIs Neural Machine Translation Ready for Deployment? A Case Study on 30 Translation Directions
In this paper we provide the largest published comparison of translation quality for phrase-based SMT and neural machine translation across 30 translation directions. For ten directions we also include hierarchical phrase-based MT. Experiments are performed for the recently published United Nations Parallel Corpus v1.0 and its large six-way sentencealigned subcorpus. In the second part of the p...
متن کاملAgreement on Target-bidirectional Neural Machine Translation
Neural machine translation (NMT) with recurrent neural networks, has proven to be an effective technique for end-to-end machine translation. However, in spite of its promising advances over traditional translation methods, it typically suffers from an issue of unbalanced outputs, that arise from both the nature of recurrent neural networks themselves, and the challenges inherent in machine tran...
متن کاملMultilingual Neural Machine Translation for Low Resource Languages
Neural Machine Translation (NMT) has been shown to be more effective in translation tasks compared to the Phrase-Based Statistical Machine Translation (PBMT). However, NMT systems are limited in translating low-resource languages (LRL), due to the fact that neural methods require a large amount of parallel data to learn effective mappings between languages. In this work we show how so-called mu...
متن کامل